Tetrahedron Letters 50 (2009) 5713-5715

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

A concise method for the synthesis of 2-tetralone by titanium tetrachloride-promoted cyclization of 4-aryl-2-hydroxybutanal diethyl acetal

Yung-Son Hon*, Rammohan Devulapally

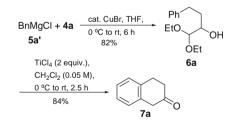
Department of Chemistry and Biochemistry, National Chung Cheng University, Chia-Yi 62102, Taiwan, ROC

ARTICLE INFO

Article history: Received 29 June 2009 Revised 17 July 2009 Accepted 17 July 2009 Available online 30 July 2009

ABSTRACT

4-Aryl-2-hydroxybutanal diethyl acetal, prepared from the reaction of benzyl Grignard reagent and glycidaldehyde diethyl acetal, was treated with titanium tetrachloride to give 2-tetralone in good yield. This highly efficient transformation involves tandem oxonium formation, intramolecular Friedel–Crafts alkylation, deethoxylation, and tautomerization in the same flask.


© 2009 Elsevier Ltd. All rights reserved.

Substituted 2-tetralones have played an important role in organic synthesis because they are highly reactive and suitable as starting materials for a wide range of compounds with biological activities, as well as being the precursors of several biologically active natural products.¹ However, in comparison with 1-tetralones, 2-tetralones are often very expensive, less stable, and much more difficult to be synthesized. We have used 4-methoxy-1,3-dioxolan-2-one as a new and unique functionality in organic synthesis.² 5-Arylethyl-4-methoxy-1,3-dioxolan-2-one 1 was treated with 2 equiv of TiCl₄ to give 2-tetralone in good yield. A plausible mechanism of 2-tetralone formation is via a key intermediate A derived from the decomposition of cyclic carbonate **1** by TiCl₄.³ Intrigued by this mechanistic hypothesis, we proposed that 1,1-dialkoxy-4arylbutan-2-ol 2 should also be a useful precursor of the oxonium intermediate A (Fig. 1). Here we describe our synthesis of 2-tetralone from the acetal of 4-aryl-2-hydroxybutanal 2.

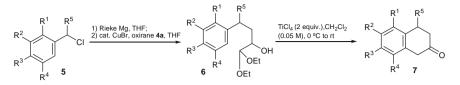
1,1-Dialkoxy-4-arylbutan-2-ol **2** was retrosynthesized by breaking its C(3)–C(4) bond. The synthetic design included glycidaldehyde dialkylacetal $\mathbf{4}^4$ and benzylic Grignard reagent $\mathbf{5}'$ (Fig. 1 and Eq. 1).⁵

The epoxide **4a** was treated with benzylmagnesium chloride (**5a**') in the presence of CuBr catalyst at 0 °C to give 2-hydroxy-4phenylbutanal diethyl acetal (**6a**) in 82% yield.⁶ After the diluted solution of diethyl acetal **6a** was treated with 2 equiv of TiCl₄ at 0 °C, 2-tetralone (**7a**) was isolated in 84% yield (Scheme 1). The result indicates that the diethyl acetal **6a** is a useful precursor of 2tetralone, as elucidated in Figure 1. In comparison with the cyclic carbonate **1** prepared by multiple-step synthesis,² the diethyl acetal **6a** was prepared in one step from Grignard reagent and oxirane **4a** in high yield. $\begin{array}{c} X \\ MeO \\ 1 \\ Q \\ RO \\ Q \\ RO \\ Q \\ RO \\ Q \\ RO \\ OR \end{array} \xrightarrow{\begin{array}{c} 2 \text{ equiv. TiCl}_4, \\ CH_2Cl_2 \\ CO_2 \\ CO_2$

Figure 1. A plausible mechanism for 2-tetralone formation from compound 1 or 2 via the common intermediate A.

Scheme 1. Synthesis of 2-tetralone (**7a**) by TiCl₄-promoted intramolecular cyclization of 4-phenyl-2-hydroxybutanal diethyl acetal.

$$R^{\mu\nu} \longrightarrow OEt
R = H 3a
Me 3b
Me$$


Some benzyl Grignard reagents can be difficult to be prepared or inaccessible through the conventional treatment of magnesium

^{*} Corresponding author. Tel.: +886 5 2720411x66412; fax: +886 5 2721040. *E-mail address:* cheysh@ccu.edu.tw (Y.-S. Hon).

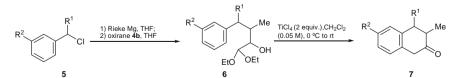
^{0040-4039/\$ -} see front matter @ 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2009.07.129

Table 1

Preparation of 2-tetralone 7 from 4-aryl-2-hydroxyacetal 6, which is derived from the reaction of glycidaldehyde diethyl acetal (4a) with benzylmagnesium chloride 5'

Entry	Benzyl chloride						Metalation		Epoxide 4a ring opening			2-Tetralone formation	
	\mathbb{R}^1	R ²	R ³	R^4	R ⁵		Temp. (°C)	Time (h)	Temp. (°C)	Time (h)	Yield (%)	Time (h)	Yield (%) ^a
1	OMe	Н	Н	Н	Н	5b	-20 to -10	1	-40-rt	2.5	82 6b	2	88 7b
2	Н	OMe	Н	Н	Н	5c	-40	1	-40-rt	4	89 6c	2	83 7c
3	Н	Н	OMe	Н	Н	5d	-40	1	-40-rt	3.5	86 6d	2	85 7d
4	Me	Н	Н	Н	Н	5e	-80 to -50	3	-50-rt	2	83 6e	3	87 7e
5	Н	Me	Н	Н	Н	5f	-80 to -50	3	-50-rt	2.5	85 6f	3	65 7f; 25 7f'
6	Н	Н	Me	Н	Н	5g	-80 to -50	3	-50-rt	2	78 6g	3.5	86 7g
7	Н	Cl	Н	Н	Н	5ĥ	-50	0.5	-50-rt	3	69 6h	5	71 7h; 3 7h′
8	Н	Н	Cl	Н	Н	5i	-50	0.5	-50-rt	3.5	77 6i	8	68 7i
9	Н	Me	Me	Н	Н	5j	-80 to -50	2	-50-rt	3	95 6 j	2.5	64 7j; 25 7j′
10	Me	Н	Me	Н	Н	5k	-80 to -50	1	-50-rt	2.5	75 6k	2.5	79 7 k
11	Me	Н	Н	Me	Н	51	-10 to 0	3	-10-rt	4	79 61	2.5	96 71
12	Н	Н	Н	Н	Me	5m	-50	1	-50-rt	2	77 6m	3	86 7m
13	Н	Н	Н	Н	Et	5n	-50	1	-50-rt	2	76 6n	2.5	79 7n
14	Н	Н	Н	Н	Ph	50	-50	0.5	-50-rt	2	72 60	2.5	86 70

^a 8-Methyl-2-tetralone (**7f**') was formed as a minor product which was inseparable from **7f**; 8-chloro-2-tetralone (**7h**') was formed as a minor product; and 7,8-dimethyl-2-tetralone (**7j**') was formed as a minor product which was inseparable from **7j**.


powder or turnings with benzyl halide.⁷ Nevertheless, they can be prepared in situ by the reaction of highly reactive Rieke Mg with the corresponding benzyl chlorides 5 in tetrahydrofuran (THF) at lower temperature (Table 1).⁸ The resulting benzylmagnesium chlorides react regioselectively with glycidaldehyde diethyl acetal (4a) in the presence of CuBr to give the corresponding diethyl acetal 6, with yields of 69–95% (Table 1). 4-(2-Methoxyphenyl)butanal diethyl acetal (6b) was treated with TiCl₄ at 0 °C to give 5-methoxy-2-tetralone (7b) in 88% yield (entry 1, Table 1). When the C(4)-aryl group of the diethyl acetal **6** was 4-methoxyphenyl (i.e., 6d), 4-methylphenyl (i.e., 6g), or 4-chlorophenyl (i.e., 6i), it was treated with TiCl₄ to give the corresponding 7-substituted 2-tetralone in excellent yields (entries 3, 6, and 8). When the C(4)-aryl group of the diethyl acetal 6 was 2-methylphenyl (i.e., 6e), 2,4dimethylphenyl (i.e., 6k), or 2,5-dimethylphenyl (i.e., 6l), it was treated with TiCl₄ to give the corresponding 2-tetralone in excellent yields (entries 4, 10, and 11). The results indicate that the intramolecular Friedel-Crafts reaction can be used in the preparation of 7-chloro-, 7-methyl-, 7-methoxy-, 5,7-dimethyl-, and 5,8dimethyl-2-tetralones in good yields.

In order to introduce the substituent at C(4) of 2-tetralone, the Grignard reagent derived from secondary benzyl halide is needed. α -Methylbenzyl chloride (**5m**) was treated with Rieke Mg by the standard protocol, and the resulting Grignard reagent was reacted with oxirane **4a** in the presence of CuBr to give the acetal **6m** in 77% yield. Further treatment with TiCl₄ gave 4-methyl-2-tetralone (**7m**) in 86% yield (entry 12). Similarly, 4-ethyl-2-tetralone (**7n**) and 4-phenyl-2-tetralone (**7o**) were prepared in good yields starting from the corresponding α -ethylbenzyl chloride (**5n**) and α -phenylbenzyl chloride (**5o**), respectively (entries 13–14). Thus, this method allows the introduction of a C(4)-substituent on 2-tetralone.

In order to introduce a C(3) substituent on 2-tetralone, the 1,2disubstituted oxirane is needed. The oxirane **4b** was treated with benzylmagnesium chloride (**5a**') at 0 °C to give 1,1-diethoxy-3methyl-4-phenylbutan-2-ol (**6p**) in 73% yield. Interestingly, no CuBr is needed in this reaction. When the diluted solution of acetal **6p** was treated with TiCl₄, 3-methyl-2-tetralone (**7p**) was isolated in 86% yield (Table 2, entry 1). Similarly, the Grignard reagent derived from 3-methoxybenzyl chloride **5c** was treated with oxirane

Table 2

Preparation of 2-tetralone 7 from 4-aryl-2-hydroxyacetal 6, which was derived from the reaction of oxirane 4b with benzylmagnesium chloride 5'

Entry	Benzy	yl chloride		Metala	ation	Epoxide 4b ring opening			2-Tetralone formation	
	\mathbb{R}^1	R ²		Temp. (°C)	Time (h)	Temp. (°C)	Time (h)	Yield (%)	Time (h)	Yield (%)
1	Н	Н	5a	a	a	0-rt	24	73 6p	3	86 7p
2	Н	OMe	5c	-40	1	-40-rt	24	58 6q	2.5	79 7q
3	Ph	Н	50	-50	0.5	-50-rt	24	56 60 ″	3	58 70" (syn/anti 1/2.8)

 $^{\rm a}\,$ Commercially available benzyl magnesium chloride $({\bf 5a'})$ was used.

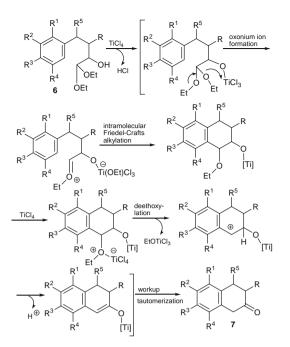


Figure 2. A plausible mechanism for 2-tetralone 7 formation from compounds 6.

4b followed by TiCl₄-promoted cyclization to give 6-methoxy-3-methyl-2-tetralone (**7q**) in 79% yield (Table 2, entry 2).

In order to introduce the substituents at both the C(3)- and C(4)-positions of 2-tetralone, the α -substituted-benzyl chloride and 1,2-disubstituted oxirane **4b** were used as starting materials. α -Phenylbenzyl chloride (**5o**) was treated with Rieke Mg by the standard protocol, and the resulting Grignard reagent was reacted with oxirane **4b** at $-50 \,^{\circ}$ C to give α -hydroxy acetal **6o**" in 56% yield. Further treatment with TiCl₄ gave 3,4-dimethyl-2-tetralone (**7o**") as a mixture of two diastereomers (*syn/anti* 1/2.8) in 58% yield (Table 2, entry 3). The stereochemistry of the major isomer

was determined by 2D-NOESY and from the coupling constant of C(4)–H and C(3)–H. In summary, 4-aryl-2-hydroxybutanal diethyl acetal **6** was easily prepared from the reaction of benzyl organometallic reagent and glycidaldehyde diethyl acetal **4**. The diluted solution of acetal **6** was treated with TiCl₄ to give 2-tetralones in good yields. A variety of substituents can be introduced at all positions of 2-tetralone except C(1) by this method. The 2-tetralone formation involves tandem oxonium ion formation, intramolecular Friedel–Crafts alkylation, deethoxylation, and tautomerization in the same flask (Fig. 2).³ To the best of our knowledge, this two-step synthetic sequence is the most efficient and direct way to prepare 2-tetralone derivatives.

Acknowledgments

We are grateful to the National Science Council, National Chung Cheng University, and Academia Sinica for the financial support.

References and notes

- 1. Silveira, C. C.; Braga, A. L.; Kaufman, T. S.; Lenardao, E. J. *Tetrahedron* **2004**, *60*, 8295–8328. and references cited therein.
- (a) Hon, Y. S.; Wang, Y. C. Tetrahedron Lett. 2005, 46, 1365–1368; (b) Hon, Y. S.; Wang, Y. C.; Wu, K. J. J. Chin. Chem. Soc. 2008, 55, 896–914; (c) Hon, Y. S.; Kao, C. Y. Tetrahedron Lett. 2009, 50, 748–751.
- 3. Hon, Y. S.; Devulapally, R. Tetrahedron Lett. 2009, 50, 2831-2834.
- 4. (a) van Allan, J. A. Org. Synth. Collect. **1963**, 4, 21–22; (b) Karimi, B.; Seradj, H.; Ebrahimian, G.-R. Synlett **1999**, 1456–1458.
- (a) Durrwachter, J. R.; Drueckhammer, D. G.; Nozaki, K.; Sweers, H. M.; Wong, C.-H. J. Am. Chem. Soc. **1986**, 108, 7812–7818; (b) Silverman, R. B.; Ding, C. Z. J. Am. Chem. Soc. **1993**, 115, 4571–4576.
- (a) Posner, G. H. Org. React. 1975, 22, 253–400; (b) Liu, Z.; Sayre, L. M. Chem. Res. Toxicol. 2003, 16, 232–241.
- Suh, Y. S.; Lee, J.-s.; Kim, S. H.; Rieke, R. D. J. Organomet. Chem. 2003, 684, 20–36. and reference cited therein.
- (a) Rieke, R. D.; Li, P. T.-Z.; Burns, T. P.; Uhm, S. T. J. Org. Chem. **1981**, 46, 4323–4324. and references cited therein; (b) Rieke, R. D. Acc. Chem. Res. **1977**, 10, 301–306; (c) Rieke, R. D.; Hanson, M. V. Tetrahedron **1997**, 53, 1925–1956; (d) Rieke, R. D. Science **1989**, 246, 1260–1264.